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Abstract—Public cloud infrastructures allow for easy, on-
demand access to FPGA resources. However, the low-level,
direct access to the FPGA hardware exposes the infrastructure
providers to new types of attacks. Prior work has shown that
it is possible to uniquely identify the underlying hardware by
creating fingerprints of the different FPGA instances that users
rent from a cloud provider, but such work was not able to
actually map the cloud FPGA infrastructure itself. Meanwhile,
this paper demonstrates that it is possible to reverse-engineer the
co-location of FPGA boards inside a cloud FPGA server using
PCIe contention. Specifically, this work deduces the Non-Uniform
Memory Access (NUMA) locality of FPGA boards within a server
by analyzing their mutual PCIe contention during simultaneous
use of the PCIe bus. In addition, experiments conducted in data
centers located in several geographic regions and repeated at
different times are used to calculate the probability that cloud
providers allocate FPGA boards co-located in the same server
to a user. This paper thus shows that it is possible to map
cloud FPGA infrastructures, and learn how FPGA instances are
physically co-located within a server. Consequently, this paper
also highlights the importance of mitigating these novel avenues
for reverse-engineering and mapping of cloud FPGA setups, as
they can reveal insights about the cloud infrastructure itself, or
assist other single- and multi-tenant attacks.

Index Terms—Cloud FPGAs, FPGA Security, PCIe Con-
tention, FPGA Fingerprinting, Cloud Cartography

I. INTRODUCTION

Over the past 5 years, several cloud providers have made
Intel and Xilinx FPGAs available in their infrastructures, with
Amazon Web Services (AWS) F1 instances being the most
widely accessible [4]. More recently, FPGAs are being offered
from other cloud providers such as Alibaba [1], Baidu [6],
Huawei [16], Nimbix [27], or Tencent [38]. This widespread
adoption of public cloud FPGAs has made the on-demand
hardware acceleration of analytics in financial, big data, and
anomaly detection applications possible [3]. However, it has
also resulted in serious implications for the security of the
cloud infrastructure itself.

Some cloud providers, including AWS, have taken steps to
protect their infrastructure by blocking known potential threats
such as Ring Oscillators (ROs), which can be used to waste
power [28], cause hardware faults [18], detect voltage [14] and
temperature [40] variations, or produce unique fingerprints of
the underlying hardware in the form of Physical Unclonable
Functions (PUFs) [39]. However, recent research has shown
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these countermeasures to be insufficient, not only because
of alternative RO structures that can bypass these defense
mechanisms [13], [37], but also due to DRAM-based [41]
PUFs that can be used to fingerprint the FPGA instances
without the use of ROs. All the existing attacks and defenses
have not considered how attackers could gain information
about the location of the FPGAs inside the data center, which
is the focus of this work.

In particular, this paper presents a new approach for map-
ping cloud FPGA infrastructures, based on PCIe contention.
The main insight behind our research is that memory accesses
between the host computer and an FPGA board become a
bottleneck when two or more FPGAs from the same Non-
Uniform Memory Access (NUMA) node within a server are
accessing memory simultaneously. The accesses are done over
PCIe, and we show that it is possible to influence the PCIe
bandwidth by running an FPGA memory stressor, and to
observe this change in bandwidth by running a separate FPGA
memory tester on a different FPGA board in the server. Using
this approach, we can determine which FPGA slots within a
server can mutually interfere due to their NUMA node locality.
This can be done even without the use of Physical Unclonable
Functions (PUFs) or banned circuits such as ring oscillators,
and without any knowledge of the data center architecture.

We show that in f1.16xlarge AWS instances, FPGAs in
slots 0–3 or 4–7 interfere with each other, and thus conclude
that they form separate NUMA nodes. We then use data
from dozens of f1.2xlarge instances that have been rented
one after the other and determine that successive instances
often (but not always) belong to the same NUMA locality.
The findings are confirmed for f1.4xlarge instances and
across different data center regions for both instance types. We
perform additional experiments with f1.2xlarge instances
to calculate the probability of renting the same FPGA or
FPGAs within the same NUMA locality across time, therefore
fingerprinting and mapping the cloud infrastructure on a very
fine-grained level, which was previously impossible. In fact,
we find that a given FPGA board can be reused between the
three F1 instance types available in AWS. This corrects prior
work claiming no such overlap [41].

As our work exposes a fundamental infrastructure issue,
it is critical to understand these threats, so that they can be
mitigated. Simply focusing on the security of the FPGA chip
itself, but ignoring other infrastructure components such as the
PCIe bus, leaves cloud FPGAs open to new vulnerabilities.



To help address these issues, we disclosed our findings to
the Amazon Web Services security and FPGA teams prior
to publication.

A. Contributions

In summary, the contributions of this paper are as follows:
1) We identify that there is contention between FPGA slots

in cloud servers by analyzing the impact of simultaneous
memory accesses over PCIe in f1.16xlarge AWS
instances. Our analysis exposes new details about the
AWS servers and their NUMA localities.

2) Having determined that contention exists, we jointly
experiment with PCIe contention and DRAM PUF fin-
gerprinting on f1.2xlarge and f1.4xlarge in-
stances across different AWS data center regions to
reveal insights about the FPGA instance allocation algo-
rithm used by the AWS cloud and overlaps between the
physical hardware used for the different instance types.

B. Paper Organization

After summarizing the relevant background on the FPGA
architecture of Amazon F1 instances, cloud FPGA security,
and PCIe-related concepts (Section II), we present the threat
model (Section III) and our experimental setup, which allows
us to identify co-located FPGA instances within a server
(Section IV). Next, the evaluation covers (a) f1.16xlarge
experiments leading to the discovery of PCIe contention
and NUMA localities, and (b) tests with f1.2xlarge and
f1.4xlarge instances to calculate the probability that the
allocation algorithm places different instances in the same
server (Section V). We then discuss this work in the context of
related research (Section VI), before concluding (Section VII).

II. BACKGROUND

This section introduces the architecture of FPGAs on
Amazon’s cloud (Section II-A), and PCIe-related concepts
(Section II-B) to contextualize the rest of the paper. An in-
depth discussion of related work can be found in Section VI.

A. AWS F1 Instances

Amazon Web Services (AWS) offers FPGAs as part of its
public cloud infrastructure in several geographical regions.
These instances, or Virtual Machines (VMs), come in three fla-
vors, with 1, 2, or 8 dedicated FPGAs per VM instance, called
f1.2xlarge, f1.4xlarge, and f1.16xlarge (the in-
stance name is twice the number of FPGAs, so f1.2xlarge
has 1 FPGA, while f1.4xlarge has 2, etc.). The total
amount of resources allocated per VM increases proportionally
with the number of attached FPGAs, providing 8 virtual CPUs
(vCPUs) from Intel Xeon E5-2686 v4 (Broadwell) processors,
122GiB of RAM, and 470GB of NVMe SSD per FPGA [4].
Thus, e.g., f1.16xlarge instances have 64 vCPUs, 976GiB
of RAM and 3.7TB of disk space.

Each FPGA board can communicate with the server over
x16 PCIe Gen 3. In addition, each FPGA can access (via
the programmable logic) four DDR4 DRAM chips on the

FPGA board itself, which are separate from the server’s
DRAM. The FPGA DRAM comes with Error Correcting
Codes (ECC), and a total of 16GB of memory [4] for
each FPGA. AWS F1 instances use 16 nm Virtex UltraScale+
XCVU9P chips [4], which internally contain over 1.1 million
lookup tables (LUTs), 2.3 million flip-flops (FFs), and 6.8
thousand Digital Signal Processing (DSP) blocks [43]. It
should be noted that f1.16xlarge instances use a dedicated
PCIe fabric, which “lets the FPGAs share the same memory
space and communicate with each other across the fabric at
up to 12Gbps in each direction” [4], suggesting that a server
can consist of at most two CPUs and eight attached PCIe
cards (FPGAs). As we show in this paper, servers indeed seem
to have two Non-Uniform Memory Access (NUMA) locality
nodes, each encompassing one CPU and four FPGAs. This
is consistent with known server and PCIe designs, but is not
publicly specified by Amazon.

AWS has taken a number of measures to ensure the se-
curity of its infrastructure. First, many details of the server
architecture, such as the concrete FPGA board design, or
the physical server internals, are not disclosed publicly (other
than the information discussed above). Moreover, designs must
interact with external interfaces through the cloud-provided
“shell”, which hides physical aspects such as clocking logic
and I/O pinouts (including for PCIe and DRAM) [14], [41].
This restrictive shell interface further prevents users from
accessing identifier resources (e.g., eFUSE and Device DNA
primitives) that could be used to distinguish between different
FPGA boards [14], [41]. Finally, users cannot directly upload
bitstreams to the FPGAs. Instead, they generate a Design
Checkpoint (DCP) file using Xilinx’s tools and then provide
it to Amazon to create the final bitstream (Amazon FPGA
Image, or AFI), after it has passed a number of Design Rule
Checks (DRCs). The checks, for example, include prohibiting
combinatorial loops such as Ring Oscillators (ROs), as a way
of protecting the underlying hardware [13], [14].

B. PCIe Contention & NUMA Localities

The Peripheral Component Interconnect Express (PCIe)
standard provides a high-bandwidth, serial, full-duplex in-
terface. Unlike its parallel, bus-based PCI predecessor, each
PCIe slot provides a point-to-point communication mechanism
(link) that connects devices in a tree topology to the host
CPU via the root complex and possibly through intermediate
switches. A link is composed of 1, 2, 4, 8, 12, 16, or 32
pairs of RX and TX differential signals (lanes) that allow
for higher throughput by interleaving transmissions (approxi-
mately 1GBps per lane for PCIe 3.0) [35].

PCIe implements a credit-based flow-control protocol be-
tween link partners (e.g., the card and a switch, or a switch
and the root complex) by sequencing the outgoing Transaction
Layer Packets (TLPs) [35]. The credit tokens are therefore
used to arbitrate and distribute bandwidth among competing
incoming or outgoing link connections. As credits are point-to-
point-based, it is possible for end-to-end traffic to be passing
through a congested link (due to an unrelated flow), even when



the individual endpoints can deal with higher bandwidth [23].
The slowdown that can be experienced by applications there-
fore not only depends on which devices are communicating,
but also the PCIe topology of the given system [11], [23].

Although different PCIe slots on the motherboard might
advertise the same number of lanes and identical performance,
where they lie on the PCIe topology graph might be different,
leading to non-uniform latency and bandwidth. For example,
even desktop computers can have multiple PCIe root com-
plexes (one in the chipset and one in the CPU integrated I/O
Hub) that are linked over lower-bandwidth interfaces [22].
These interfaces, such as Intel’s Quick Path Interconnect
(QPI), can also be used for cache coherency protocols between
different CPU sockets [25], which represent different root
complexes and only have direct access to a subset of PCIe
devices or DRAM chips.

This leads to Non-Uniform Memory Access (NUMA) laten-
cies from a CPU to different PCIe or memory slots (or vice
versa), and potentially increases contention of the interconnect
resources [20], [24]. Memory and PCIe devices that have
“the same access characteristics for a particular processor”
are called NUMA nodes or localities [20]. Although for a
given program it is possible to reduce the effects of NUMA
problems, for instance by pinning threads to cores [24], PCIe
contention can remain pronounced even when performing only
“local” accesses within a NUMA node. In some systems,
Translation Lookaside Buffer (TLB) misses in the Input-
Output Memory Management Unit (IOMMU) may also in-
crease latency and decrease throughput when issuing Direct
Memory Access (DMA) requests [26].

PCIe congestion has in the past primarily been studied for
multi-GPU systems, with PCIe switches becoming a bottle-
neck when handling traffic from multiple GPUs [7], [9], [11],
[34], [36], in part due to a Round-Robin scheduling policy
that can lead to severe stalls [21].

Despite the existing characterization of PCIe contention in
setups with more than one GPU, no works have used PCIe
contention to reverse-engineer cloud FPGA infrastructures.
The closest research is a recent work by Wang et al. [42],
who investigated the PCIe overhead of accessing FPGAs in
cloud environments for different driver implementations. In
our work, we instead more extensively study PCIe contention
effects due to simultaneous memory accesses over multiple
FPGAs at once, and use our results for architectural insights
into the AWS server infrastructure.

III. THREAT MODEL

This paper is concerned with reverse-engineering the physi-
cal server setup in cloud FPGAs. We assume the adversary can
rent cloud FPGA instances in an attempt to get information
about the hardware. The adversarial user is free to place and
route their potentially malicious logic within the confines of
their dedicated region on the FPGA chip, but their custom
logic must obey the Design Rule Checks (DRCs) imposed
by the cloud providers. For example, no combinatorial loops
are allowed on AWS FPGAs, and users do not have direct

Fig. 1. Diagram of the deduced AWS server configuration, with
8 FPGAs sharing the same server across two NUMA nodes.

access to I/O pins, but are instead forced to interact with
external resources through the cloud-provided shell. Users
further do not have access to resources which are inaccessible
in cloud environments, including identifiers such as eFUSE
and Device DNA primitives, or voltage and temperature mon-
itors. Adversaries can instead try to infer or influence such
information indirectly (e.g., by using PUFs or other alternative
RO constructions), but they do not have physical access to the
underlying FPGA boards or server racks themselves. We also
do not assume vulnerabilities in the virtualization mechanisms
that would allow users to (directly) snoop on the memory or
PCIe transactions of other VM instances. Attacks on the cloud-
provided logic, FPGA software tools, or the bitstream itself are
similarly out-of-scope.

We instead focus on detecting contention that is the result
of changes in the PCIe bandwidth when different FPGAs
in the same server attempt simultaneous memory accesses.
A key contribution of this work is therefore the ability to
detect such contention and correlate it to co-located FPGAs,
without external equipment, access to privileged FPGA logic,
or vulnerabilities in the FPGA software itself.

IV. EXPERIMENTAL SETUP

The experiments in this paper are performed on FPGA
F1 instances publicly available through the AWS Elastic
Cloud Compute (EC2) platform. Figure 1 shows the likely
AWS server configuration based on public information and
the results of our experiments. In particular, a server can
contain up to 8 FPGAs, split over two NUMA nodes across
two CPU sockets. Each server can accommodate eight sep-
arate f1.2xlarge users (recall that each f1.2xlarge
instance only uses 1 FPGA), four f1.4xlarge instances
with 2 FPGAs each, a combination of f1.2xlarge and
f1.4xlarge instances using at most 8 FPGAs in total,
or a single f1.16xlarge customer using all 8 FPGAs.
Based on our assumption that only 4 FPGAs share the same
NUMA node, we expect that only interference within a NUMA
node will be measurable. This translates into up to four
f1.2xlarge, two f1.4xlarge, or one f1.4xlarge and
two f1.2xlarge instances interfering with each other.



To confirm the above server setup configuration, i.e., to
show that exactly four FPGAs can lead to mutual PCIe
contention, we experiment with all three types of F1 instances.
Unless otherwise specified, experiments are primarily con-
ducted in the us-east-1 region, but Section V-D reproduces
the experimental results in all four AWS data center regions
that offer FPGA instances, namely ap-southeast-2 (Syd-
ney), eu-west-1 (Ireland), us-east-1 (North Virginia),
and us-west-2 (Oregon). As explained in Section V-D, our
approach works with both on-demand and spot instances.

Our setup involves testing with two FPGAs at a time, a
memory stressor and a memory tester. The tester repeatedly
measures its PCIe bandwidth by writing from the host VM
to the FPGA DRAM, while the stressor similarly attempts
to interfere with the tester’s bandwidth by stressing its own
PCIe connection. More precisely, we use the (unmodified)
CL_DRAM_DMA example FPGA image provided by the AWS
FPGA development kit [5] as the basis for both the PCIe tester
and the PCIe stressor designs.

For the stressor, approximately 8.4MB of data are moved
between the CPU and FPGA for each transfer, and the transfers
are repeated 100 times, giving a total transfer size of 840MB.
This transfer takes less than a second to complete. The tester
runs the same bandwidth-measurement program, but transfers
3.9 kB per test, or 394 kB total.

The stressor and tester are run in parallel on separate
instances in order to observe if the tester bandwidth is affected
(reduced) due to the stressor’s activity or not. If it is, we
conclude that the stressor and tester instances are on the
same server and share the same NUMA node. The tests are
repeated multiple times with the same instances to prevent
false positives or negatives, e.g., due to memory activity from
other, unrelated users’ instances being on the same server.

Finally, in addition to measuring the bandwidth, we use
the open-source code by Tian et al. [41] to collect Physical
Unclonable Function (PUF) fingerprints of the FPGA instances
and more concretely map the cloud infrastructure.

V. EVALUATION

In this section we perform a thorough evaluation of the
cross-FPGA PCIe contention in several geographical re-
gions and VM instance types. Specifically, we first analyze
the impact of simultaneous memory accesses over PCIe in
f1.16xlarge instances, showing that FPGAs in slots 0–
3 and 4–7 interfere with each other, and conclude that they
form separate NUMA nodes (Section V-A). We then ex-
periment with dozens of f1.2xlarge (Section V-B) and
f1.4xlarge (Section V-C) instances across different data
center regions (Section V-D) to determine that successive
instances often (but not always) belong to the same NUMA
locality, for both spot and on-demand instance types. We use
our results to calculate the probability of renting FPGAs in
the same server (Section V-E) and fingerprint the FPGAs
(Section V-F), showing overlap among instance types, in
contrast to prior work. We finally discuss some practical
aspects of our reverse-engineering approach (Section V-G).
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Fig. 2. PCIe contention analysis for all eight FPGA slots in five
f1.16xlarge instances rented concurrently in the us-east-1
region. A red square denotes that the stressor (y-axis) interferes
with the tester (x-axis), as determined by observing that the PCIe
bandwidth is reduced below a target threshold. As can be seen,
contention exists among groups of exactly 4 consecutive slots within
a single VM instance.

A. Determining NUMA localities

Based on the background presented in Section II-A, we
expect each F1 server to contain 2 CPUs, each of which
has 4 FPGAs in its locality, for a maximum of 8 FPGAs
per server. We verify this in several ways. First, by running
the numactl --hardware command [20], we determine
that f1.16xlarge instances produce 2 nodes compared
to smaller instances, which show 1 nodes. The results
of lscpu are similar, and commands like hwloc-info
or lstopo -p also only reference 2 NUMANodes in
the f1.16xlarge case. Even though information about
the physical hardware in VMs is not always reliable,
(e.g, /sys/bus/pci/devices/<id>/numa_node re-
turns -1 for the various PCIe slot identifiers), an application
note by AWS also confirms that FPGAs in slots 0–3 and 4–7
are separate “groups” (i.e, NUMA nodes), with FPGAs within
a group being able to “directly access other FPGAs within the
same group”, while an access “between groups is not direct
and not optimal (higher latency, lower bandwidth)” [2].

With the above information supporting our initial assump-
tions, we rent five f1.16xlarge spot instances, containing a
total of 40 FPGAs. We use each of those FPGAs individually
as a stressor, and consecutively (one by one) test the effect
on all FPGAs (including the stressor) as testers, for a total of
40× 40 = 1,600 data points. We repeat measurements twice,
with the results of both repetitions being identical: as shown
in Figure 2, we only find contention between (instance, slot)
FPGA pairs (i1, s1) and (i2, s2) if and only if i1 = i2 and
0 ≤ s1, s2 ≤ 3 or 4 ≤ s1, s2 ≤ 7. In other words, there is no
overlap between separate f1.16xlarge instances or cross-
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Fig. 3. Cross-VM contention between f1.2xlarge instances in
the us-east-1 region: (a) presents the instances in the order in
which they are launched, while (b) re-orders them to more clearly
show pairs with PCIe contention.

NUMA effects, and the graph is symmetric, i.e., the roles of
stressors and testers are interchangeable.

B. Cross-VM PCIe Contention

In this section we rent 20 f1.2xlarge spot instances in
the us-east-1 region, collecting 20× 20 = 400 bandwidth
measurements for each pair of possible stressor and tester
combinations. We repeat experiments five times, with identical
results for each repetition, again proving that our bandwidth-
based metric is a robust way of detecting cross-instance
contention. The results are plotted in Figure 3 in two ways.
First, Figure 3a shows the results of our measurements, with
instances numbered in the chronological order in which they
are launched. Second, Figure 3b re-orders the instances so that
FPGA pairs with contention are plotted adjacent to each other.

As in the f1.16xlarge case, the resulting matrix is
symmetric, since the contention is bi-directional. More impor-
tantly, otherwise-independent VM instances affect each other
in a measurable way. Specifically, within the 20 instances
launched, we find two groups of full NUMA nodes (i.e., 4
FPGAs), three groups of 3 FPGAs, one of 2 FPGAs, and
only one FPGA without any contention, likely because it only
has 2 instances launched after it. FPGAs within the same
NUMA node are occasionally returned one after the other
(e.g., instances 11–15), but are also sometimes interspersed
with other NUMA nodes (e.g., instances {4, 6, 8, 10}). We
calculate the probability of renting another instance in the
same NUMA node in Section V-E.

C. Contention between f1.4xlarge Instances

To evaluate whether our observations also hold for
f1.4xlarge instances, we rent 20 f1.4xlarge spot in-
stances in us-east-1, for a total of 40×40 = 1,600 stressor
and tester pairs, repeating measurements three times. The
results, which are shown in Figure 4, indicate that contention is
still possible both within and between different f1.4xlarge
instances: we find 7 pairs of distinct instances that form
complete NUMA nodes with 4 FPGAs. We again notice that
co-located instances tend to not be fully consecutive, but are
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Fig. 4. Cross-VM contention between f1.4xlarge instances with
2 FPGAs each in the us-east-1 region. In this test, 14 of the
20 launched instances are co-located in 7 NUMA nodes while the
remaining 6 are not co-located with any of the other instances. Recall
that f1.4xlarge VMs contain two FPGAs, so the two slots within
an instance always interfere with each other, explaining why there are
always at least two red squares per row and column in the figure.
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Fig. 5. Example test results for cross-VM contention between
f1.2xlarge spot instances in the us-west-2 region.

instead interspersed with other instances. However, unlike the
results of Section V-B, where the lone FPGA was rented
near the end of the 20 instances, all six lone f1.4xlarge
instances are among the first 10 instances launched, with the
first five corresponding to instances 1–5. In other words, in our
experiments, it was almost always possible to find contention
in f1.2xlarge instances provided enough instances were
launched after them. However, the first few f1.4xlarge
instances were not co-located with any other instances, while
later VMs were more likely to be co-located in the same server.

D. Data Center Regions and On-Demand Instances

As the previous experiments were conducted with spot
instances in the us-east-1 region, we perform measure-
ments with spot instances in the us-west-2 (Figure 5)
and eu-west-1 (Figure 6) regions, as well as with on-
demand instances in the ap-southeast-2 (Figure 7) and
us-east-1 (Figure 8) regions, with experiments repeated
once with 20 and 10 FPGAs respectively. It should be noted
that we could not find availability for spot instances in the
ap-southeast-2 region. In addition, the pre-synthesized
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Fig. 6. Example test results for cross-VM contention between
f1.2xlarge spot instances in the eu-west-1 region.
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Fig. 7. Cross-VM contention between f1.2xlarge on-demand
instances in the ap-southeast-2 region.

CL_DRAM_DMA AFI was not available in this region, so we
synthesized it using its publicly-available source code.

The results are broadly similar to the experiments of Sec-
tion V-B, with only 10% (6/60) of instances not resulting in
cross-VM contention. Indeed, 7 complete NUMA localities
are identified, along with 6 groups of three FPGAs and
4 pairs of two VMs. It is further interesting to note that,
in our experiments, groups in us-west-2 almost always
appeared in succession, while groups in other regions were
more disjointed. More experiments could determine whether
this pattern was due to user demand and usage characteris-
tics (which may differ among regions), or whether different
instance allocation strategies apply to the various data centers,
instance types, or times of the day or week.

E. Probability of Co-Location

Having uncovered that up to four f1.2xlarge instances
can interfere with each other, we further analyze the proba-
bility of the f1.2xlarge instances being co-located on the
same server. Specifically, we use the data gathered in previous
sections to calculate the probability PK that, given a tester
FPGA, launching K stressor instances will result in at least
one of the K new FPGAs being placed in the same NUMA
node as the tester FPGA.
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Fig. 8. Cross-VM contention between f1.2xlarge on-demand
instances in the us-east-1 region.
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Fig. 9. Probability PK of finding another f1.2xlarge instance in
the same NUMA node (overall and for individual AWS data centers),
as a function of the number of FPGA instances launched K.

Let NK be the number of VMs for which there is PCIe
contention with any of the next K instances launched. More-
over, let MK be the number of VMs which have fewer than K
instances launched after them and which are not the last in a
full NUMA node detected within the experiment. The second
constraint is needed because, although for groups of up to
3 FPGAs the remaining FPGAs might be found by renting
more instances, if the NUMA node has been fully detected,
no additional VM will correspond to the same locality, no
matter how many instances are launched. Denoting by T as
the total number of VMs launched, the desired probability is

PK =
NK

T −MK
(1)

As an example using the on-demand instances of Figure 8,
T = 10, and for K = 3, MK = 3 (instances 8–10 have ≤ 2
VMs launched after them), while NK = 3 (instances 1, 4,
and 7 are in the same NUMA nodes as instances 3, 5, and 10
respectively), so P3 = 3/(10− 3) = 43%.
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Fig. 10. Sample PUF fingerprints from a pair of overlapping FPGAs
between (a) f1.2xlarge and (b) f1.16xlarge instances. The
two PUFs and their (c) bitwise AND are almost identical.
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Fig. 11. Sample PUF fingerprints from non-overlapping FPGAs
between (a) f1.2xlarge and (b) f1.16xlarge instances. The
two PUFs are distinct, and their (c) bitwise AND is empty.

Figure 9 calculates PK for 1 ≤ K ≤ 10, both for individual
regions and over all regions tested. Depending on the region,
the probability that two consecutive VMs are co-located (i.e.,
K = 1) ranges between 38–58% (with the exception of
ap-southeast-2), while renting just one more instance
can increase this probability by approximately 10 percentage
points (or 55 points for the Sydney region). Renting even more
instances increases this probability further to about 80% for
K = 10, in part due to the smaller number of instances that
have at least K FPGAs launched after them (i.e., a larger MK).

Note that for sufficiently large T and K, we expect PK =
75%, as there is a 1 in 4 chance that the sensor instance is
the last FPGA in its NUMA node. However, for smaller T
and K, PK can be larger (as in Figure 9), since Amazon does
not always fully pack consecutively instances within a single
server: as the previous sections showed, co-located instances
are often launched further apart in time.

F. Overlap between Instance Types

In this section, we use the open-source code by Tian et
al. [41] to fingerprint individual FPGAs and detect overlaps
between experiments repeated on different days. Specifically,
we make additional measurements from the us-east-1
region, and compare the PUF fingerprints between spot and
on-demand f1.2xlarge instances in availability zone c
and spot f1.2xlarge, f1.4xlarge, and f1.16xlarge
instances in zone e, all collected on different days.

We reach two main conclusions. First, there is an over-
lap between spot and on-demand VMs, and, second, unlike
what prior work suggested [41], there is overlap between
all three instance types. For example, instances 7 and 17 of
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Fig. 12. Median tester bandwidth for different numbers of enabled
stressors and transfer sizes (bandwidth averaged over 100 transfers).

Figure 3 overlap with slots 0 and 1 of instance 3 in Figure 2.
Figure 10 presents extracts from the PUF fingerprints for
one of the two pairs of overlapping FPGAs. The FPGAs
in the f1.2xlarge and f1.16xlarge instances had 419
and 461 DRAM bit flips respectively, of which 419 bit flip
locations (DRAM addresses) were identical. This allows us
to conclude that the two instances correspond to the same
underlying FPGA hardware. By contrast, Figure 11 shows the
same f1.2xlarge instance along with a different FPGA slot
of the f1.16xlarge instance. This FPGA has a fingerprint
with 483 bit flips, of which none are in the same locations
as those in the f1.2xlarge instance. As a result, these two
FPGAs are distinct, as expected.

In addition, we found an overlap between instances 1,
2, and 9 of Figure 3 and another set of 10 f1.4xlarge
instances rented. Consequently, not only is there the potential
for cross-VM contention between identical spot instance types,
but also between f1.2xlarge and f1.4xlarge spot and
on-demand instances (but not f1.16xlarge ones, as they
reserve all FPGAs within the server).

It is worth noting that the overlap between different instance
types is perhaps somewhat surprising. Tian et al. rented many
VMs (60 for each instance type), but their goal was to find
repeated hardware allocations over time, so these VMs were
not rented simultaneously. AWS thus often re-used the same
instances, resulting in only 10 unique f1.2xlarge, 6 unique
f1.4xlarge, and 8 unique f1.16xlarge instances, for
a total of 86 FPGAs [41]. Instead, we found an overlap
of just two FPGAs in a pool of 20 f1.2xlarge and 5
f1.16xlarge instances, three FPGAs between the same
set of 20 f1.2xlarge and an additional 10 f1.4xlarge
instances, and no overlap between the ten f1.4xlarge and
five f1.16xlarge instances, for a total of 20 · 1 + 10 · 2 +
5 · 8− 2− 3 = 75 unique FPGAs. This suggests that it is rare
(but not impossible) for instance types to be repurposed, likely
primarily in cases of unmet demand of smaller F1 types.

G. Practical Considerations

The presented infrastructure mapping attack is inexpensive
to deploy, and anyone with access to the public cloud FPGA
infrastructure can perform it, using just the utilities provided



by AWS. In fact, it remains both easy and cheap to find
instances in the same NUMA node: less than a minute is
needed to determine whether the given stressor is co-located
with any of the testers.

Another important aspect to consider is whether detecting
contention is possible in the presence of interference from
other tenants. To address this issue, we rent an f1.16xlarge
instance and investigate simultaneous transmissions from 0–
3 stressor FPGAs to the last one in the NUMA node. We
experiment with different transfer sizes, i.e., bytes moved
from the DRAM to the stressor, and average the calculated
bandwidth over 100 transfers. The results, summarized in
Figure 12, show that the tester bandwidth is highest when
no stressors are enabled, at over 3GBps. When a stressor is
enabled (at any transfer size), the bandwidth quickly drops
below 1GBps, and is the reason why we can effectively
detect co-located FPGAs with a simple threshold. Enabling
a second stressor FPGA, bandwidth becomes even lower at
128–190MBps (depending on the transfer size), and remains
approximately the same when the final FPGA in the NUMA
node acts as a third stressor.

As a result, it is still possible to reverse-engineer the
infrastructure and detect co-location in the presence of traffic
generated by a single external user, provided that the band-
width sustained by that user remains the same during the
measurement period. In other words, the tester threshold needs
to be adjusted to account for the additional external traffic,
e.g., from 2.0GBps to 0.5GBps. Moreover, the adversary can
completely bypass any effects from third parties by renting
f1.4xlarge instances, thereby using all resources in a
NUMA node. In fact, doing so allows them to more quickly
map the infrastructure, but at a higher cost.

VI. RELATED WORK

In this section we summarize prior work in FPGA security
(Section VI-A) and cloud-related attacks (Section VI-B).

A. Remote FPGA Attacks

In recent years, besides attacks on the FPGA bitstream itself,
e.g., [10], there has been extensive research on FPGA security
without physical access to the underlying hardware, with
covert-channel, side-channel, and fault attacks predominantly
using voltage or temperature to affect the FPGA chips [17].
Many such works, e.g., [12], [18], [29], [44], focus on attacks
between different users of the FPGA, and are therefore not
directly applicable to single-tenant clouds.

Although most attacks have been performed in lab en-
vironments, a covert-channel attack between separate dies
(“Super Logic Regions”) was shown to be possible on AWS
and Huawei cloud [14], and a side-channel attack on AWS
by Glamocanin et al. soon followed [15]. The former de-
pends on alternative ring oscillator designs that bypass AWS
restrictions [13], [37], while the latter uses Time-to-Digital
Converters (TDCs), both of which could be detected by
additional Design Rule Checks (DRCs) [19]. By contrast, our
research does not focus on the FPGA chip, but the cloud FPGA

infrastructure, and in particular the shared PCIe bus used by
different FPGA boards within each server.

B. Cloud Security

Since the initial public deployments of cloud computing
infrastructures, researchers have looked at ways to attack
(and improve) their security. In early Amazon EC2 cloud
architectures involving only CPUs, researchers quickly showed
how to reverse-engineer the infrastructure and place an attacker
VM on the same server as the victim VM [33]. The main
method for doing so was through internal IP addresses and
network latencies, which exposed sufficient information about
the underlying setup for effectively 0% false positives, and a
40% chance of VM co-location on the same server and CPU
in the AWS EC2 cloud [33]. The false positive rate and the
co-location probability are all comparable to (but lower than)
those in our work focusing on PCIe and FPGAs.

There is also a body of research that has demonstrated
that contention of I/O resources (hard-drive throughput and
network bandwidth, for example) is also a potential security
vulnerability in cloud infrastructures such as EC2. For exam-
ple, it is possible to cause performance degradation of co-
located instances [8], [30]. Also, Richter et al. showed that
when virtualizing PCIe Network Interface Cards (NICs) using
Single Root I/O Virtualization (SR-IOV), it is feasible for
one VM to cause congestion on the NIC ingress buffers [31].
As a possible defense, Richter et al. recommend Quality-of-
Service (QoS) extensions and different scheduling algorithms
to ensure that flooding a Virtual Function (VF) in one Physical
Function (PF) cannot cause performance degradation in a
different PF [32].

Our work further advances research in similar areas, as
we have shown how to determine co-location and aspects
of the scheduling algorithm using PCIe contention in FPGA-
accelerated clouds. Based on our work, attacks on intentional
performance degradation of the PCIe bandwidth or further
work on understanding how interference can affect our new
attack or disrupt other users are a natural extension as well.

VII. CONCLUSION

This paper identified PCIe contention as a means for map-
ping cloud FPGA infrastructures. We showed that it is possible
to reverse-engineer the NUMA locality of different FPGAs
within an AWS server, and therefore find which f1.2xlarge
and f1.4xlarge instances are co-located within the same
server. We also found that f1.2xlarge and f1.4xlarge
instance types can be scheduled on the same AWS server, and
we uncovered that the probability of successive users renting
FPGAs within the same server is high. Consequently, this
paper highlighted the dangers of shared infrastructures and
the ability for adversaries to map and analyze whether FPGA
instances are co-located by use of PCIe contention. In order
to secure FPGA-accelerated infrastructures it is therefore not
only necessary to consider the FPGA chip security, but also
other system components accessible to the logic running on
the FPGA.
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