
Characterization of IOBUF-based Ring Oscillators

Julia Burgiel, Daniel Esguerra, Ilias Giechaskiel, Shanquan Tian,
and Jakub Szefer

20th International Conference on Field-Programmable Technology (FPT),
Auckland, New Zealand, Dec. 2021

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works. DOI:
10.1109/ICFPT52863.2021.9609950

1

http://doi.org/10.1109/ICFPT52863.2021.9609950


Characterization of IOBUF-based Ring Oscillators
Julia Burgiel

Yale University
New Haven, CT, USA
julia.burgiel@yale.edu

Daniel Esguerra
Yale University

New Haven, CT, USA
daniel.esguerra@yale.edu

Ilias Giechaskiel
Independent Researcher

London, United Kingdom
ilias@giechaskiel.com

Shanquan Tian
Yale University

New Haven, CT, USA
shanquan.tian@yale.edu

Jakub Szefer
Yale University

New Haven, CT, USA
jakub.szefer@yale.edu

Abstract—Ring Oscillators (ROs) are fundamental primitives
that are used as building blocks in many other types of cir-
cuits. This paper presents an in-depth characterization of ring
oscillators which leverage the IOBUF primitive found in modern
Xilinx FPGAs. This work first analyzes the impact of the drive
strength and slew rate attributes of the IOBUFs on the ROs, and
also characterizes the impacts of external temperature, internal
voltage, and external voltage fluctuations on the frequency of
the proposed ROs. This work further demonstrates that IOBUF-
based ROs can detect whether electrical connections to the
IOBUF pins have changed, including whether the DRAM module
has been physically removed. Finally, the proposed ROs can
be realized on cloud FPGAs, bypassing the restrictions that
some cloud providers impose on combinatorial loops, and thus
presenting a new security threat to remote FPGAs.

I. INTRODUCTION

Ring Oscillators (ROs) are a combinatorial loop circuit that
contains an odd number of inverter gates, and any number of
buffer gates. The inverter and buffer gates are typically im-
plemented in lookup-tables (LUTs), but they can also include
latches or flip-flops [1], [7]. ROs can be used for many types
of defensive circuits such as True Random Number Generators
(TRNGs) and Physical Unclonable Functions (PUFs) [9]. At
the same time, ROs can also be used for covert- or side-
channel attacks as both receivers (since their frequencies can
change in response to temperature or voltage fluctuations) and
transmitters (by causing such fluctuations) [5].

The primary contribution of this work is using the IOBUF
primitive to create an RO design that can be tuned and is
not detected by existing Design Rule Checks (DRCs) used by
cloud providers such as Amazon Web Services (AWS). This
work further discovers that IOBUF-based ROs can be used
to detect whether electrical connections to the IOBUF pins
have changed, and demonstrates this by detecting whether
the attached DRAM module has been removed. We open
source the IOBUF-based RO design at https://caslab.csl.yale.
edu/code/iobuf-ro/.

II. BACKGROUND

The ROs presented in this paper are based on the IOBUF
primitive found in UltraScale+ and earlier Xilinx FPGA fam-
ilies, which are popular both for in-house deployments and in
public cloud infrastructures.

This work was supported in part by NSF grant 1901901.

A. Ring Oscillators

Ring oscillators are typically realized using a combinatorial
loop consisting of an odd number of inverter gates. ROs can
also include any number of buffer stages, which are usually
implemented in lookup tables (LUTs), but can alternatively be
realized using latches or flip-flops [1], or other primitives such
as multiplexers, carry chains, and Digital Signal Processing
(DSP) blocks [4]. Xilinx documentation also mentions the
use of IODELAY primitives to manipulate the frequencies of
ROs [11] as an additional building block that can be applied
to different types of ring oscillators. Our ROs instead use the
IOBUF primitive [8], can be tuned post-routing without RTL
changes, and can be deployed in cloud FPGAs, bypassing
Design Rule Checks, and hiding their functionality from
existing defenses, e.g., [4].

B. IOBUF Primitives

An IOBUF is a Xilinx primitive which connects internal
logic to an external bidirectional pin. It is made up of a buffer
input, a buffer output, a bidirectional (in/out) port connection
to an external device pad, and tri-state control (on/off). In
our RO design, we use IOBUFs in the low-impedance (non-
tri-stated) mode. IOBUFs have three additional attributes,
which can be set through parameters during their instantiation,
or altered in a later stage of the design process through
Tcl commands: the I/O standard (IOSTANDARD), the drive
strength (DRIVE), and the slew rate (SLEW). Although settable
in software, the I/O standard in practice depends on the voltage
level and signaling mode of the physical pin and the FPGA
I/O bank in which it belongs [12]. On the other hand, the
drive strength (in mA) and the slew rate (corresponding to
SLOW or FAST output rise and fall times) can be meaningfully
changed, even post-routing, and, as we show, directly impact
the frequency of the resulting ring oscillator.

C. IOBUF-based Ring Oscillator Design

Our IOBUF-based RO is shown in Figure 1. It is similar to
the traditional LUT-based ROs, but instead connects the output
of one of the inverter gates to the input buffer of the IOBUF
primitive. The output buffer of the primitive then feeds the
AND gate, while the T signal is set low, making it act as a
regular (rather than a tri-state) buffer.1 Because the input and

1In Xilinx terminology, the “output” of an IOBUF is the external signal
coming into the FPGA, while its “input” is the internal signal going out of
the FPGA and driving the external I/O pin.

mailto:julia.burgiel@yale.edu
mailto:daniel.esguerra@yale.edu
mailto:ilias@giechaskiel.com
mailto:shanquan.tian@yale.edu
mailto:jakub.szefer@yale.edu
https://caslab.csl.yale.edu/code/iobuf-ro/
https://caslab.csl.yale.edu/code/iobuf-ro/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1901901


Enable
0

IOBUF-based RO Feedback Loop

IOBUF as a non-inverting

RO stageN (odd) number of

inverting stages

In

Out

IOBUF

Output

…

T

I/O 

Pad

Fig. 1. Diagram of the proposed IOBUF-based RO design.

the output of the IOBUF are connected together inside the
IOBUF primitive, they behave as a buffer stage that mirrors
its input to its output, while also driving the I/O pad pin itself.
By inserting the IOBUF between one of the inverting stages,
the combinatorial feedback loop detected by the FPGA tools
is eliminated, allowing the IOBUF-based RO to be instantiated
even on commercial cloud FPGA deployments. Moreover, by
changing the drive strength and slew rate properties of the
IOBUF primitive, it is possible to change the frequency of
the RO, without changing its structure or routing. Finally, as
we show, the connection to the I/O pad makes the IOBUF-
based ROs able to detect changes in electrical connections
from adjacent IOBUF pins.

III. EXPERIMENTAL SETUP

Our tests are conducted on two 7 Series development boards
from Xilinx: the KC705 board with a Kintex 7 XC7K325T
FPGA, and the AC701 board with an Artix 7 XC7A200T
chip. We use IOBUF primitives corresponding to I/O pins
from an FPGA Mezzanine Card (FMC) as well as IOBUF
primitives corresponding to I/O pins from Dynamic Random
Access Memory (DRAM). In addition, we test the IOBUF-
based ROs on UltraScale+ FPGAs in AWS, by using DRAM
pins, which are the only ones directly accessible to users.

In our tests we instantiate multiple IOBUF-based ROs in an
FPGA, and control and measure them independently one-by-
one, along with a baseline LUT-based RO that is instantiated
in the FPGA as a reference. All ROs use 7 inverters unless
otherwise specified, but we have confirmed that results remain
similar for other numbers of stages. For all experiments, a
Xilinx Design Constraints (XDC) file is used to specify the
placement location of the inverters for both the baseline ref-
erence LUT-based RO and the IOBUF-based ROs. We further
leverage the FPGA floorplan and FPGA board schematics to
find which IOBUFs map to FMC pins, DRAM pins, as well
as to adjacent IOBUFs on the FPGA.

For experiments on the RO sensitivity to external thermal
changes, the FPGA board is placed in a TestEquity 115A
Temperature Chamber, which is remotely controlled by a
Python script that changes the temperature from 15 °C to
45 °C in steps of 5 °C. To test the RO sensitivity to external
voltage fluctuations, the FPGA board is attached to a Keithley
2231A-30-3 power supply, which is remotely controlled by a
Python script that varies the input FPGA board voltages from
11.5V to 12.5V in increments of 0.1V. Finally, to test the
RO sensitivity to internal voltage fluctuations, a set of five
RO-based stressors is instantiated inside the FPGA, alongside

Fig. 2. External temperature sensitivity of 16 different IOBUF-
based ROs (green diamonds) and 16 (identical) measurements of the
reference RO (blue squares) on the KC705 board. All ROs contain
7 inverters, and their respective frequencies are approximately 83-
85MHz to 107-110MHz for the IOBUF-based ROs (depending on
pin and routing) and 174-176MHz for the reference LUT-based RO.

the baseline LUT-based RO and the IOBUF-based ROs. Each
stressor group consists of 2,000 ROs with two buffer stages
each, and can be turned on or off to manipulate the internal
FPGA voltage, since the more stressors that are turned on, the
higher the internal voltage drops are [2], [6].

IV. CHARACTERIZATION OF IOBUF-BASED ROS

In this section we characterize the impact of the drive
strength and slew rate attributes of IOBUF primitives on the
frequencies of the proposed ROs, and also evaluate the impact
of external temperature, internal voltage, and external voltage
changes on their behavior.

A. External Temperature Sensitivity

Figure 2 shows how external temperature changes affect
the IOBUF-based ROs and the baseline LUT-based RO, as
tested in the thermal chamber. The absolute RO frequencies
may vary slightly in each run due to noise, thus we repeat the
experiments and calculate the averages. The relative change in
the frequencies of the IOBUF-based ROs is significantly larger
compared to the reference RO, with a slope of approximately
0.06% per degree centigrade, compared to about 0.02% for
the reference RO.2 The proposed ROs are thus more sensitive
to external temperature variations, and could potentially serve
as better thermal sensors compared to existing ROs used for,
e.g., thermal temporal attacks [10].

B. Internal Voltage Sensitivity

Figure 3 shows the relative frequency change in the IOBUF-
based ROs as 1, 3, or all 5 stressors are turned on, inducing
progressively bigger internal FPGA voltage drops. Here, the
two types of ROs exhibit similar trends, although IOBUF-
based ROs seem to be impacted less by the stressors (and
voltage changes). As a result, the proposed ROs could be
possibly used to make more stable RO-based Physical Un-
cloneable Functions (PUFs) [9].



Fig. 3. Comparison of RO frequencies with different number of
stressors enabled, for both IOBUF-based ROs (green diamonds) and
the reference RO (blue squares). Each stressor has 2,000 ROs.

Fig. 4. External voltage sensitivity of 16 different IOBUF-based
ROs (green diamonds) and 16 measurements of the reference RO
(blue squares) for the same setup as in Figure 2.

C. External Voltage Sensitivity

Figure 4 shows how the FPGA board input voltage (prior to
the regulator) affects the IOBUF-based ROs and the reference
RO. Here, the two types of ROs exhibit similar sensitivity
to external voltage changes. As a result, the proposed ROs
could be used as drop-in replacements for traditional RO
sensors used for voltage sensing, e.g., in cross-FPGA voltage
attacks [2], while bypassing Design Rule Checks.

D. Drive Strength and Slew Rate

Figure 5 shows the impact of different drive strengths and
slew rates on the IOBUF-based ROs: in the given setup, it is
possible to adjust an RO’s frequency by over 30MHz through
different drive strength and slew rate parameters. Keeping
the drive strength the same but changing the slew rates
from SLOW to FAST generally increases the RO’s frequency
by approximately 3-10MHz. The frequency change when
increasing the drive strength is as high as 20-33MHz, and thus
has a higher impact compared to the slew rate. Note that these
parameters are modified in a post-routing Design Check Point
(DCP) file using Tcl commands, with the synthesis, placement,
and routing of the entire design remaining identical. This fact
allows us to adjust the delay of the IOBUF-based ROs, without
the need for dedicated IODELAY elements.

2Plots of absolute frequency changes are similar: IOBUF-based ROs are
more sensitive to temperature fluctuations in both relative and absolute terms.

E. Repeatability: Slice Location & Boards

We repeated experiments in several slice locations within
the IOBUF’s clock region (top/bottom right/left and adjacent
to the IOBUFs), with similar results: although the concrete
frequencies of the ROs changed (the further the LUTs were
placed from the IOBUFs, ths lower the RO frequency), the
patterns remained similar.

Figure 6 further shows the results of our experiments on
different temperature, voltage, slew rate and drive strength
combinations across two KC705 boards and an AC701 board.
In the interest of space, we only show a limited number of
such combinations. The different boards generally exhibit very
similar behavior, highlighting that the IOBUF-based ROs have
reliable properties across several setups.

V. DETECTING CHANGES IN ELECTRICAL CONNECTIONS

We further investigated whether the IOBUF-based ROs can
be abused for new types of vulnerabilities. To that end, we used
the floorplan information from Xilinx tools to find triplets of
physically adjacent IOBUFs. We chose the middle IOBUF to
be used for an IOBUF-based RO. The remaining two adjacent
IOBUFs (left and right) were then driven with a fixed signal
representing either high or low digital values. We focused on
triplets using IOBUFs connected to DRAM address pins: since
address pins are outputs from the FPGA and inputs to the
DRAM, it is safe to drive these IOBUFs without damaging
the DRAM.

For each test, we took 512 measurements from the IOBUF-
based RO, while adjacent IOBUFs cycled through the four
possible fixed values of 00, 01, 10, and 11 (i.e., in the first
measurement both IOBUFs carry value 0, while in the second
measurement, the right IOBUF is updated to value 1, etc.) A
reference RO was placed elsewhere on the device to monitor
for noise and any external voltage or temperature fluctuations.

Figure 7 shows an example set of measurements from an
IOBUF triplet on the KC705 board. In this example, the RO
frequency is the highest when both adjacent IOBUFs carry the
value 1, the lowest when they both carry 0, and in between
otherwise. Although this effect may be due to other aspects
of the routing and placement logic, e.g., long wires [1] or
multiplexers [3], we discovered that for a fixed bitstream, the
crosstalk characteristics change when there is a physical or
electrical change to the pins and wires.

Specifically, we measured the frequency behavior of 5 ran-
domly selected IOBUF-based RO triplets on the board before
and after the DRAM chip removal. When the DRAM module
was physically connected to the board, the IOBUF-based ROs
were consistently the fastest when the two adjacent IOBUFs
carried the value 1. However, when the DRAM was removed
(but the bitstream remained the same), this was no longer the
case: the 11 pattern did not always lead to the fastest RO
frequency. To put it differently, for a random set of 5 IOBUF-
based RO triplets, 100% of the RO triplets with adjacent values
of 11 were the fastest when the DRAM was present. However,
when the DRAM was removed, this percentage dropped to the
40% to 60% range. This unexpected ability to infer when the



Fig. 5. Frequencies of an IOBUF-based RO with different drive strength and slew rates. The routing of the entire design remains identical in
all tests, with changes made directly to the post-routing Design Check Point (DCP) file. The data is shown for a sample RO corresponding
to FMC pin FMC_LPC_CLK0_M2C_N of a KC705 board, but is representative of other pins and boards tested.

Fig. 6. Comparison of IOBUF-based RO frequencies across
two KC705 boards and an AC701 board for FMC pins
FMC_LPC_CLK0_M2C_N and FMC1_HPC_CLK0_M2C_N for the
two respective boards. Similar results were obtained across different
setups and pins tested.

Fig. 7. Measured IOBUF-based RO frequencies on a KC705 FPGA
when adjacent IOBUFs cycle through the values 00, 01, 10, and 11.

DRAM has been removed from the FPGA board hints at a
new means of detecting whether an attacker has physically
tampered with the memory of an FPGA.

VI. IOBUF-BASED ROS ON CLOUD FPGAS

In addition to the above evaluation on AC701 and KC705
boards, we have also confirmed that our IOBUF-based ROs
can be successfully instantiated on Amazon’s F1 instances,
which use Virtex UltraScale+ boards. Our experiments were
conducted on f1.2xlarge instances in the us-east-1e
region, using AWS FPGA Developer AMI version v1.7.0.
By using pins from the attached DRAM modules, we were

able to realize IOBUF-based ROs on F1 instances, despite the
current Design Rule Checks (DRCs) which aim to detect and
prevent traditional LUT-based ROs.

VII. CONCLUSION

This paper presented an in-depth characterization of
IOBUF-based ROs, including measuring the impact of the
drive strength and slew rate attributes, temperature changes,
as well as external and internal voltage changes. This work
further discovered that IOBUF-based ROs can be used to
detect whether electrical connections to the IOBUF pins have
changed, and can be deployed on public cloud infrastructures.

REFERENCES

[1] I. Giechaskiel, K. B. Rasmussen, and J. Szefer, “Measuring long wire
leakage with ring oscillators in cloud FPGAs,” in International Confer-
ence on Field Programmable Logic and Applications (FPL), 2019.

[2] ——, “C3APSULe: Cross-FPGA covert-channel attacks through power
supply unit leakage,” in IEEE Symposium on Security and Privacy
(S&P), 2020.

[3] I. Giechaskiel and J. Szefer, “Information leakage from FPGA routing
and logic elements,” in International Conference on Computer-Aided
Design (ICCAD), 2020.

[4] T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch, “FP-
GADefender: Malicious self-oscillator scanning for Xilinx UltraScale+
FPGAs,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 13, no. 3, Sep. 2020.

[5] S. S. Mirzargar and M. Stojilović, “Physical side-channel attacks and
covert communication on FPGAs: A survey,” in International Confer-
ence on Field Programmable Logic and Applications (FPL), 2019.

[6] G. Provelengios, D. Holcomb, and R. Tessier, “Characterizing power
distribution attacks in multi-user FPGA environments,” in International
Conference on Field Programmable Logic and Applications (FPL),
2019.

[7] T. Sugawara, K. Sakiyama, S. Nashimoto, D. Suzuki, and T. Nagatsuka,
“Oscillator without a combinatorial loop and its threat to FPGA in data
centre,” Electronics Letters, vol. 15, no. 11, pp. 640–642, May 2019.

[8] F. Z. Tazi, C. Thibeault, Y. Savaria, S. Pichette, and Y. Audet, “On extra
delays affecting I/O blocks of an SRAM-based FPGA due to ionizing
radiation,” IEEE Transactions on Nuclear Science, vol. 61, no. 6, pp.
3138–3145, Dec. 2014.

[9] S. Tian, A. Krzywosz, I. Giechaskiel, and J. Szefer, “Cloud FPGA
security with RO-based primitives,” in International Conference on
Field-Programmable Technology (FPT), 2020.

[10] S. Tian and J. Szefer, “Temporal thermal covert channels in cloud
FPGAs,” in International Symposium on Field-Programmable Gate
Arrays (FPGA), 2019.

[11] Xilinx, Inc., “Creating a controllable oscillator using the Virtex-
5 FPGA IODELAY primitive (XAPP872),” https://www.xilinx.com/
support/documentation/application notes/xapp872.pdf, 2009, Accessed:
2021-07-01.

[12] ——, “7 Series FPGAs SelectIO resources (UG471),”
https://www.xilinx.com/support/documentation/user guides/ug471
7Series SelectIO.pdf, 2018, Accessed: 2021-07-01.

https://www.xilinx.com/support/documentation/application_notes/xapp872.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp872.pdf
https://www.xilinx.com/support/documentation/user_guides/ug471_7Series_SelectIO.pdf
https://www.xilinx.com/support/documentation/user_guides/ug471_7Series_SelectIO.pdf

